
Parallel Enhanced Whale Optimization Algorithm

Bevan Stanely

Department of Microbiology and Cell Biology

Indian Institute of Science, Bangalore, India

bevanstanely@iisc.ac.in

Abstract—One of the current state-of-the-art nature-inspired
meta-heuristic optimization algorithms is the enhanced Whale
Optimization Algorithm (WOAmM). It integrates a modified
mutualism phase from Symbiotic Organisms Search (SOS) into
the original Whale Optimization Algorithm (WOA). As a result,
it efficiently addresses the premature convergence seen in WOA.
We propose a parallel implementation of the same under the
CUDA GPU architecture and demonstrate the speedups achieved
compared to the sequential algorithm.

I. INTRODUCTION

Meta-heuristic algorithms work by spawning a popula-

tion of agents and engaging them in exploration and ex-

ploitation phases. The exploratory phase helps to explore

the search space extensively, whereas the exploitatory step

refines promising solutions from the exploratory stage. Two

primary challenges for parallel meta-heuristic algorithms are

generating thread-safe random numbers and resolving data

dependencies among populations. Additionally, we fixed the

population size to that of warp size and resorted to using

only the registers’ local memory for improved cache efficiency,

allowing us to employ the fast warp primitives for intra-warp

communication and evade the slow shared memory altogether.

II. RELATED WORK

Meta-heuristic algorithms are iterative by nature, and

swarm-based methods, in particular, preserve search space

information over subsequent iterations and involve fewer op-

erators compared to evolutionary approaches. Mirjalili and

Lewis [1] described a swarm-based meta-heuristic optimiza-

tion algorithm called Whale Optimization Algorithm (WOA).

It is inspired by the bubble-net hunting strategy of humpback

whales. A hybrid of WOA with a modified mutualism phase

from Symbiotic Organisms Search (SOS) came out desig-

nated enhanced Whale Optimization Algorithm (WOAmM)

[2]. WOAmM addresses the drawbacks of WOA, namely, low

exploration ability, slow convergence speed, and being trapped

into a local solution easily.

III. A PARALLEL ENHANCED WHALE OPTIMIZATION

ALGORITHM

WOAmM has two components: the original WOA and the

Mutualism phase of the symbiotic organism search (mSOS)

algorithm. Sequential execution of WOAmM allowed data-

dependent stochasticity for both components. The probability

that a randomly selected individual has already been updated

increases from zero for the first individual to one for the last

individual in serial WOAmM. A parallel implementation of the

algorithm will have to forsake this advantage. But as would

be later found, this is inconsequential for the optimization if

we can assure the quality of random numbers.

A. Modified Mutualism phase of the symbiotic organism

search (mSOS) algorithm

Mutualism is a two-way relationship between two organ-

isms, where both of them benefitted from the interaction. A

typical example would be honey bees and flowers. Mathemat-

ically we can express it as,

P
(k+1)
i = P

(k)
i + rnd · (Ps −MV ·BF1) (1)

P (k+1)
r = P (k)

n + rnd · (Ps −MV ·BF2) (2)

where Pi is the ith individual1, and Pr is an organism

randomly2 selected to interact with Pi and Ps is the individual

with the best fitness among Pr & Ps. The remaining

variables are as follows.

Ps = minfitness(Pn, Pm) (3)

Pr = maxfitness(Pn, Pm) (4)

MV =
Pi + Ps

2
(5)

BF = round(1 + rnd) (6)

B. Whale Optimization Algorithm (WOA)

WOA mimics the bubble-net hunting strategy of humpback

whales and includes three phases, searching the prey, encir-

cling the target, and spiral bubble-net feeding maneuver. WOA

uses these three phases to balance between exploration and

exploitation.

1) Searching the prey: Whales randomly search the target,

depending on its current location. This behavior of the hump-

back whale is used in the algorithm to amplify its exploration

capability.

2) Encircling the prey: During this phase, we assume the

current best solution to be close to the optimal solution. Then,

the whales update their positions near the best solutions.

We can mathematically write 1 and 2 as:

P (k+1) = P
(k)
random/best −A ·D (7)

1P∗ corresponds to a position vector
2We use rnd to denote a random number with a uniform distribution

between [0, 1]. All references to random numbers in this paper corresponds
to rnd

TABLE I
PARAMETERS OF WOA

a1: A number decreasing linearly from 2 to 0

a2: A number decreasing linearly from -1 to -2

b = 1

l = (a2 − 1)rnd+ 1

The vectors A, C, and D are calculated as follows:

D = |C · P
(k)
random/best − P (k)| (8)

A = 2a1 × rnd− a1 (9)

C = 2× rnd (10)

Fig. 1. Bubble-net feeding behavior of humpback whales.

3) Bubble-net attacking strategy: Humpback whales follow

a surface feeding behavior known as bubble-net attack, where

the whales move on a helix-shaped path. We implement this

strategy in WOA as:

P (k+1) = D∗ · ebl · cos 2πl + P
(k)
best (11)

D∗ = P
(k)
best − P (k) (12)

C. Parallelization

For parallelization, we employed CUDA under GPU (Algo-

rithm 1). We modeled the individuals Pi of the population as

GPU threads and stored the population data and its fitness in

the thread’s local memory (register). To capitalize on the wrap

level communication offered, we fixed the population size n to

the warp size 32, allowing communication of population data

without involving the slow shared memory. A single kernel

executed the complete WOAmM algorithm within a thread

warp.

1) Intra-warp Communication: Threads need to communi-

cate to find Pbest and to find Prandom. We have resorted to

an all-to-all butterfly reduction with shfl xor sync () warp

primitive to find Pbest, which returns the cost and thread id

of the best. Similarly, for Prandom, we calculate the thread

Algorithm 1: Parallel WOAmM for GPU.

1 # Start kernel from here for single warp;

2 for each thread do

3 Initialize the population Pi(i = 1, 2 . . . n);
4 Initialize k = 0 & maxiter;

5 while k < maxiter do

6 Fetch population = [Pm, Pn] from other threads

randomly, where Pi 6= Ps 6= Pr;

7 Calculate the new value of Pi & Pr using

eq.1 and eq.2;

8 Calculate the fitness of P k+1
i and P k+1

r ;

9 Update the value of Pi and Prif the new fitness

value is minimum;

10 Find Pbest;

11 #Procedure WOA starts from here;

12 for every search-agent do

13 Update A,C, l & β;

14 if β < 0.5 then

15 if |A| ≥ 1 then

16 Select a random individual Prandom

Update the position of Pi by eq 7

for Prandom
17 else

18 Update the position of Pi by eq 7

for Pbest
19 end

20 else

21 Update the position of current

search-agent by eq.8
22 end

23 Check boundary conditions;

24 end

25 k = k + 1
26 end

27 end

28 Return Pbest

id first. Later for both cases, we use shfl sync () warp

primitive to fetch the individual Pbest or Prandom.

2) Avoiding Warp Divergence: mSOS and WOA have

conditionals that can lead to warp divergence. We have used

pointer arrays and binary boolean values to prevent it.

3) Random Numbers: WOAmM is a stochastic algorithm

and hence needs random numbers for execution. The state

size of the Mersenne Twister 19937 generator (64 bit) that we

use in a sequential program is 19937 bits or 2.5 kilobytes.

In parallel execution for thread safety, we need a state for

each thread. Hence the pseudo-random number generators like

mt19937 64 from the CPU world are not ideal; the local

memory for GPUs will become a bottleneck. Therefore we

have used two RNGs MRG32k3a, and Philox 4x32 10, with

device API, which is much leaner and a robust RNG from

the Mersenne Twister family MTGP32 with host API. We

initialized the device RNGs within the CUDA kernel and used

TABLE II
FIXED DIMENSION UNIMODAL AND MULTIMODAL FUNCTIONS.

ID Function Equation Search Space Dimension D Optimum Value

Unimodal

F1 Sphere F (x) =
∑D

k=1 x
2
k [−100, 100] 30 0

F2 Rosenbrock F (x) =
∑D−1

k=1 [100(xk−1 − x2
k)

2 + (xk − 1)2 [−30, 30] 30 0

Multimodal

F3 Rastrigin F (x) =
∑D

k=1[x
2
k − 10 cos(2Πx) + 10] [−5.12, 5.12] 30 0

F4 Griewank F (x) = 1
4000

∑D
k=1 x

2
k −

∏D
k=1 cos(

xk√
k
) + 1 [−600, 600] 30 0

TABLE III
PARAMETERS VARIED IN THE EXPERIMENTS

Parameter Set

RNG
Host: {MTGP32}

Device: {MRG32k3a,Philox 4x32 10}

Iterations {30,100,300}

Blocks {1,2,4,6}

the sequence option to distribute states for individual threads.

We initialized the host RNG from the CPU.

IV. EXPERIMENTS AND RESULTS

A. Experiment Setup

Parallel WOAmM was evaluated by applying it to four

well-known multi-variate functions selected from the original

paper. The sample included two unimodal (F1 and F2) and two

multimodal (F3 and F4) functions with dimensions 30. Further

information regarding the functions is available in Table II.

For an optimization algorithm, while parallelizing, we have

to focus on the accuracy of the result and execution speed.

Thus, we face two main challenges to achieve our goal. First,

we have to make up for the loss of data dependency and

then address the lower quality of GPU RNGs. Hence for the

experiments, we have varied three parameters. They are as

follows:

1) Types of RNGs.

2) Number of iterations of WOAmM

3) Number of blocks that run simultaneously in a single

experiment

The exact details of the parameters are available in Table

III.

We implemented Parallel WOAmM, compared optimization

efficiency with the sequential algorithm, and then analyzed

the speed-up to the sequential algorithm with 30 iterations

of WOAmM across all parameters. All the experiments were

performed with the GPU node of CDS Turing Cluster, with

NVIDIA Tesla K40M GPU and Xeon E5 2620 V2 CPU with

24 GB memory.

To effectively compare device RNGs with host RNG for the

Parallel WOAmM, we have separated RNG state initialization

from the actual execution of Parallel WOAmM. Hence the

memory allocation and RNG initialization times are not in-

cluded in the total runtime of Parallel WOAmM. However, the

total runtime includes computation costs with memory copy

call from device to host.

The efficiency of Parallel WOAmM has been measured by

comparing it to the sequential counterpart with 30 iterations 3.

For Parallel WOAmM, we collected data for executions with

four functions by varying parameters. Thus, each execution

of the algorithm for a particular function was carried out 50

times.

Fig. 2. The mean value of evaluated function with error bars. Note sequential
program(MT64 RNG) is included under MTGP32 for comparison as block 0.

B. Results

Fig 2 summarizes the optimization efficiency of the Parallel

WOAmM compared against sequential execution for variable

parameters. 4 Our reservations against the GPU RNGs were

not unwarranted. From Fig 2 and 3, we see that the CPU

RNG gives the most optimal value but with considerably

low speedups(in the range (0.5, 5.5)). MRG32k3a gave much

better optimization among the two GPU RNGs, pointing to a

much better bargain with randomness quality and RNG state

size.

As expected, speed-ups remain relatively constant when

increasing the number of blocks. Further, although it depends

3Thirty iterations alone give good optimization for the sequential algorithm.
4We included F2 in our experiments because it performed worse with

sequential WOAmM; it was a reasonable control. But we had to exclude it
from our analysis because it gave results three orders of magnitude worse
than the sequential optimization with single block Parallel WOAmM and
Philox 4x32 10 RNG.

TABLE IV
OPTIMIZATION AND SPEED-UPS WITH PARALLEL WOAMM

R
N

G

B
lo

ck
s

Iteration
F1 Sphere F3 Rastrigin F4 Griewank

Mean Best Speed-Up Mean Best Speed-Up Mean Best Speed-Up

M
R

G
3
2
k
3
a

1
30 3.8E+00 2.5E-03 27.9 3.6E+00 3.6E-03 39.8 1.0E+00 9.9E-01 57.0
100 1.5E-10 8.2E-20 8.7 4.2E-05 0.0E+00 12.2 3.1E-02 0.0E+00 17.6
300 6.2E-43 0.0E+00 2.9 6.1E-07 0.0E+00 4.1 2.4E-09 0.0E+00 5.9

2
30 2.0E-01 4.2E-04 27.9 6.5E-01 2.7E-04 39.9 9.9E-01 7.9E-01 57.1
100 5.8E-12 8.4E-19 8.6 0.0E+00 0.0E+00 12.2 1.7E-04 6.0E-08 17.6
300 0.0E+00 0.0E+00 2.9 0.0E+00 0.0E+00 4.1 0.0E+00 0.0E+00 5.9

4
30 7.4E-02 4.2E-04 27.6 2.3E-01 2.4E-04 39.4 9.7E-01 6.0E-01 56.5
100 3.3E-14 3.2E-20 8.6 6.1E-07 0.0E+00 12.1 1.0E-06 0.0E+00 17.4
300 0.0E+00 0.0E+00 2.9 0.0E+00 0.0E+00 4.0 0.0E+00 0.0E+00 5.8

6
30 1.6E-02 8.6E-05 27.6 3.9E-02 4.6E-04 39.4 9.8E-01 7.8E-01 56.4
100 2.3E-15 2.7E-19 8.6 0.0E+00 0.0E+00 12.0 4.0E-07 0.0E+00 17.4
300 0.0E+00 0.0E+00 2.9 0.0E+00 0.0E+00 4.0 0.0E+00 0.0E+00 5.8

M
T

G
P

3
2

1
30 9.9E-28 1.8E-31 2.5 0.0E+00 0.0E+00 4.5 0.0E+00 0.0E+00 5.4
100 3.0E-35 3.0E-43 0.8 0.0E+00 0.0E+00 1.4 0.0E+00 0.0E+00 1.7
300 0.0E+00 0.0E+00 0.3 0.0E+00 0.0E+00 0.5 0.0E+00 0.0E+00 0.6

2
30 1.9E-20 6.1E-28 2.4 0.0E+00 0.0E+00 4.4 0.0E+00 0.0E+00 5.4
100 0.0E+00 0.0E+00 0.8 0.0E+00 0.0E+00 1.4 0.0E+00 0.0E+00 1.7
300 0.0E+00 0.0E+00 0.3 0.0E+00 0.0E+00 0.5 0.0E+00 0.0E+00 0.6

4
30 2.5E-17 3.8E-29 2.5 3.7E-06 0.0E+00 4.5 0.0E+00 0.0E+00 5.4
100 1.7E-41 0.0E+00 0.8 0.0E+00 0.0E+00 1.4 0.0E+00 0.0E+00 1.7
300 0.0E+00 0.0E+00 0.3 0.0E+00 0.0E+00 0.5 0.0E+00 0.0E+00 0.6

6
30 2.4E-16 1.1E-21 2.4 0.0E+00 0.0E+00 4.3 0.0E+00 0.0E+00 5.2
100 0.0E+00 0.0E+00 0.7 0.0E+00 0.0E+00 1.3 0.0E+00 0.0E+00 1.6
300 0.0E+00 0.0E+00 0.2 0.0E+00 0.0E+00 0.4 0.0E+00 0.0E+00 0.5

P
h
il

o
x

4
x
3
2

1
0

1
30 1.1E+01 1.4E-03 22.4 8.1E+00 4.0E-04 35.8 1.0E+00 9.7E-01 45.3
100 1.5E-10 4.6E-19 6.9 2.1E-05 0.0E+00 11.0 2.4E-02 6.0E-08 13.9
300 2.3E-40 0.0E+00 2.3 2.4E-06 0.0E+00 3.7 3.6E-09 0.0E+00 4.7

2
30 2.3E-01 8.4E-04 22.3 6.1E-01 8.9E-04 35.8 9.8E-01 6.8E-01 45.3
100 9.7E-13 5.8E-20 6.9 0.0E+00 0.0E+00 11.0 1.8E-03 0.0E+00 13.9
300 0.0E+00 0.0E+00 2.3 0.0E+00 0.0E+00 3.7 0.0E+00 0.0E+00 4.7

4
30 6.3E-02 1.9E-04 22.1 1.2E-01 1.0E-03 35.4 9.7E-01 2.8E-01 44.8
100 1.5E-14 1.6E-19 6.8 0.0E+00 0.0E+00 10.9 5.1E-07 0.0E+00 13.7
300 0.0E+00 0.0E+00 2.3 0.0E+00 0.0E+00 3.7 0.0E+00 0.0E+00 4.6

6
30 4.1E-02 7.4E-04 22.2 4.9E-02 1.4E-03 35.5 9.5E-01 4.6E-01 44.8
100 4.5E-15 1.3E-19 6.8 0.0E+00 0.0E+00 10.9 3.8E-07 0.0E+00 13.7
300 0.0E+00 0.0E+00 2.3 0.0E+00 0.0E+00 3.7 0.0E+00 0.0E+00 4.6

Fig. 3. Speed-ups of parallel implementations w.r.t. sequential program with
30 iterations and MT64 RNG

on the specific function we are evaluating, we find MRG32k3a

with 100 iterations and four blocks of GPU threads to give

good optimization and speedup.

For future works on Parallel WOAmM, we wish to exper-

iment with more GPU RNGs with a good balance between

randomness quality and size. We find a variant of WOA,

CWOA [3], which uses chaotic maps instead of random

numbers lucrative. It would be interesting to see if parallel

execution-friendly chaotic maps exist in literature.

REFERENCES

[1] S. Mirjalili and A. Lewis, “The whale optimization algorithm,” Advances

in Engineering Software, vol. 95, pp. 51–67, 2016. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0965997816300163

[2] S. Chakraborty, A. Kumar Saha, S. Sharma, S. Mirjalili, and
R. Chakraborty, “A novel enhanced whale optimization algorithm for
global optimization,” Computers and Industrial Engineering, vol. 153,
p. 107086, 2021. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0360835220307567

[3] G. Kaur and S. Arora, “Chaotic whale optimization algorithm,” Journal

of Computational Design and Engineering, vol. 5, no. 3, pp. 275–284,
01 2018. [Online]. Available: https://doi.org/10.1016/j.jcde.2017.12.006

